Найти точку максимума функции примеры решения. Экстремумы функции

Точки максимума и минимума являются точками экстремума функции, которые находятся по определенному алгорифму. Это является главным показателем при изыскании функции. Точка x0 является точкой минимума, если для всех x из определенной окрестности x0 выполняется неравенство f(x) ? f(x0) (для точки максимума объективно обратное неравенство f(x) ? f(x0)).

Инструкция

1. Обнаружьте производную функции. Производная характеризует метаморфоза функции в определенной точке и определяется как предел отношения приращения функции к приращению довода, тот, что тяготится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Скажем, производная функции y = x3 будет равна y’ = x2.

2. Приравняйте данную производную к нулю (в данном случае x2=0).

3. Обнаружьте значение переменной данного выражения. Это будут те значения, при которых данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры взамен x, при которых все выражение станет нулевым. Скажем:2-2×2= 0(1-x)(1+x) = 0x1= 1, x2 = -1

4. Полученные значения нанесите на координатную прямую и высчитайте знак производной для всего из полученных интервалов. На координатной прямой отмечаются точки, которые принимаются за предисловие отсчета. Дабы высчитать значение на интервалах подставьте произвольные значения, подходящие по критериям. Скажем, для предыдущей функции до интервала -1 дозволено предпочесть значение -2. На интервале от -1 до 1 дозволено предпочесть 0, а для значений огромнее 1 выберите 2. Подставьте данные цифры в производную и узнаете знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. негативно и на данном интервале будет стоять знак минус. Если x=0, то значение будет равно 2, а значит на данном интервале ставится позитивный знак. Если x=1, то производная также будет равна -0,24 и потому ставится минус.

5. Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Точки максимума функции наравне с точками минимума именуются точками экстремума. В этих точках функция меняет нрав поведения. Экстремумы определяются на ограниченных числовых промежутках и неизменно являются локальными.

Инструкция

1. Процесс нахождения локальных экстремумов именуется изысканием функции и выполняется путем обзора первой и 2-й производной функции. Перед началом изыскания удостоверитесь, что данный промежуток значений довода принадлежит к возможным значениям. Скажем, для функции F=1/x значение довода х=0 неприемлемо. Либо для функции Y=tg(x) довод не может иметь значение х=90°.

2. Удостоверитесь, что функция Y дифференцируема на каждому заданном отрезке. Обнаружьте первую производную Y’. Видимо, что до достижения точки локального максимума функция повышается, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость метаморфозы функции. Пока функция нарастает, скорость этого процесса является величиной позитивной. При переходе через локальный максимум функция начинает убывать, и скорость процесса метаморфозы функции становится негативной. Переход скорости метаморфозы функции через нуль происходит в точке локального максимума.

3. Следственно, на участке возрастания функции ее первая производная позитивна для всех значений довода на этом промежутке. И напротив - на участке убывания функции значение первой производной поменьше нуля. В точке локального максимума значение первой производной равно нулю. Видимо, дабы обнаружить локальный максимум функции, нужно обнаружить точку х?, в которой первая производная этой функции равна нулю. При любом значении довода на исследуемом отрезке хх? – негативной.

4. Для нахождения х? решите уравнение Y’=0. Значение Y(х?) будет локальным максимумом, если вторая производная функции в этой точке поменьше нуля. Обнаружьте вторую производную Y”, подставьте в полученное выражение значение довода х= х? и сравните итог вычислений с нулем.

5. Скажем, функция Y=-x?+x+1 на отрезке от -1 до 1 имеет постоянную производную Y’=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y”=-2. Постройте по точкам график функции Y=-x?+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Видео по теме

Полезный совет
Для нахождения производной существуют онлайн-сервисы, которые подсчитывают надобные значения и выводят итог. На таких сайтах дозволено обнаружить производную до 5 порядка.

Приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Видео по теме

Полезный совет

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

Источники:

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Инструкция

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y". Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Например, функция Y=-x²+x+1 на отрезке от -1 до 1 имеет непрерывную производную Y"=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y"=-2. Постройте по точкам график функции Y=-x²+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Здравствуйте, Дорогие друзья! Продолжаем рассматривать задания связанные с исследованием функций. Рекомендую , необходимую для решения задач на нахождение максимального (минимального) значения функции и на нахождение точек максимума (минимума) функции.

Задачи с логарифмами на нахождение наибольшего (наименьшего) значения функции мы . В этой статье рассмотрим три задачи, в которых стоит вопрос нахождения точек максимума (минимума) функций, при чём в заданной функции присутствует натуральный логарифм.

Теоретический момент:

По определению логарифма – выражение стоящее под знаком логарифма должно быть больше нуля. *Это обязательно нужно учитывать не только в данных задачах, но и при решении уравнений и неравенств содержащих логарифм.

Алгоритм нахождения точек максимума (минимума) функции:

1. Вычисляем производную функции.

2. Приравниваем её к нулю, решаем уравнение.

3. Полученные корни отмечаем на числовой прямой. *Также на ней отмечаем точки, в которых производная не существует. Получим интервалы, на которых функция возрастает или убывает.

4. Определяем знаки производной на этих интервалах (подставляя произвольные значения из них в производную).

5. Делаем вывод.

Найдите точку максимума функции у = ln (х–11)–5х+2

Сразу запишем, что х–11>0 (по определению логарифма), то есть х > 11.

Рассматривать функцию будем на интервале (11;∞).

Найдем нули производной:

Точка х = 11 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси две точки 11 и 11,2. Определим знаки производной функции, подставляя произвольные значения из интервалов (11;11,2) и (11,2;+∞) в найденную производную, и изобразим на рисунке поведение функции:

Таким образом, в точке х=11,2 производная функции меняет знак с положительного на отрицательный, значит это искомая точка максимума.

Ответ: 11,2

Решите самостоятельно:

Найдите точку максимума функции у=ln (х+5)–2х+9.

Найдите точку минимума функции у=4х– ln (х+5)+8

Сразу запишем, что х+5>0 (по свойству логарифма), то есть х>–5.

Рассматривать функцию будем на интервале (– 5;+∞).

Найдём производную заданной функции:

Найдем нули производной:

Точка х = –5 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси две точки –5 и –4,75 . Определим знаки производной функции, подставляя произвольные значения из интервалов (–5;–4,75) и (–4,75;+∞) в найденную производную, и изобразим на рисунке поведение функции:

Таким образом, в точке х= –4,75 производная функции меняет знак с отрицательного на положительный, значит это искомая точка минимума.

Ответ: – 4,75

Решите самостоятельно:

Найдите точку минимума функции у=2х–ln (х+3)+7.

Найдите точку максимума функции у = х 2 –34х+140lnх–10

По свойству логарифма выражение, стоящее под его знаком больше нуля, то есть х > 0.

Функцию будем рассматривать на интервале (0; +∞).

Найдём производную заданной функции:

Найдем нули производной:

Решая квадратное уравнение, получим: D = 9 х 1 = 10 х 2 = 7.

Точка х = 0 не входит в область определения функции и в ней производная не существует. Отмечаем на числовой оси три точки 0, 7 и 10 .

Ось ох разбивается на интервалы: (0;7), (7;10), (10; +∞).

Определим знаки производной функции, подставляя произвольные значения из полученных интервалов в найденную производную, и изобразим на рисунке поведение функции:

На этом всё. Успехов вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.